Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Topics in Antiviral Medicine ; 31(2):112-113, 2023.
Article in English | EMBASE | ID: covidwho-2319467

ABSTRACT

Background: Many mechanisms responsible for COVID-19 pathogenesis are well-known, but COVID-19 includes features with unclear pathogenesis, like autonomic dysregulation, coagulopathies, and high levels of inflammation. The SARS-CoV-2 spike protein receptor binding domain (RBD) receptor is angiotensin converting enzyme 2 (ACE2). We hypothesized that some COVID-19 patients may develop immunoglobulins (Igs) that have negative molecular image of RBD sufficiently similar to ACE2 to yield ACE2-like catalytic activity - ACE2-like 'abzymes'. Method(s): To explore this hypothesis, we studied 67 patients hospitalized with COVID-19 who had disodium ethylenediaminetetraacetate (EDTA) anticoagulated plasma samples available, obtained about 7 days after admission. We used commercially available fluorometric ACE2 assays (Abcam), and a SpectraMax M5 microplate reader (Molecular Devices), measuring Relative Fluorescent Unit (RFU, Ex/Em = 320/420 nm;RFU) in a kinetic mode every 20 min at 37C. ACE2 inhibitor provided in the assay kit was used for additional controls. In some control experiments, we added Zn2+ to plasma, or conducted serial dilutions to decrease Zn2+. To deplete Igs, we passed plasma samples through a 0.45 mum filter to remove large particles, then passed the material through 100kDa cut-off ultrafiltration membrane (PierceTM) columns, and finally used protein A/G Magnetic Beads (Life Technologies) to specifically deplete Ig, removing >99.99% of Ig as assessed with a human IgG ELISA Kit (Abcam). Result(s): ACE2 is a metalloprotease that requires Zn2+ for activity. However, we found that the plasma of 11 of the 67 patients could cleave a synthetic ACE2 peptide substrate, even though the plasma samples were collected using EDTA anticoagulant. When we spiked plasma with synthetic ACE2, no ACE2 substrate cleavage activity was observed unless Zn2+ was added, or the plasma was diluted to decrease EDTA concentration. After processing samples by size exclusion and protein A/G adsorption, the plasma samples did not cleave the ACE2 substrate peptide. Conclusion(s): The data suggest that some patients with COVID-19 develop Igs with activity capable of cleaving synthetic ACE2 substrate. Since abzymes can exhibit promiscuous substrate specificities compared to the enzyme whose active site image they resemble, and since proteolytic cascades regulate physiologic processes, anti-RBD abzymes may contribute to some otherwise obscure features of COVID-19 pathogenesis. (Figure Presented).

2.
Journal of Biological Chemistry ; 299(3 Supplement):S356-S357, 2023.
Article in English | EMBASE | ID: covidwho-2314231

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded, positive-sense RNA virus responsible for COVID-19, requires a set of virally encoded nonstructural proteins that compose a replication-transcription complex (RTC) to replicate its 30 kilobase genome. One such nonstructural protein within the RTC is Nsp13, a highly conserved molecular motor ATPase/helicase. Upon purification of the recombinant SARS-CoV-2 Nsp13 protein expressed using a eukaryotic cell-based system, we biochemically characterized the enzyme by examining its catalytic functions, nucleic acid substrate specificity, and putative protein-nucleic acid remodeling activity. We determined that Nsp13 preferentially interacts with single-stranded (ss) DNA compared to ssRNA during loading to unwind with greater efficiency a partial duplex helicase substrate. The binding affinity of Nsp13 to nucleic acid was confirmed through electrophoretic mobility shift assays (EMSA) by determining that Nsp13 binds to DNA substrates with significantly greater efficiency than RNA. These results demonstrate strand-specific interactions of SARS-CoV-2 Nsp13 that dictate its ability to load and unwind structured nucleic acid substrates. We next determined that Nsp13 catalyzed unwinding of double-stranded (ds) RNA forked duplexes on substrates containing a backbone disruption (neutrally charged polyglycol linker (PGL)) was strongly inhibited when the PGL was positioned in the 5' ssRNA overhang, suggesting an unwinding mechanism in which Nsp13 is strictly sensitive to perturbation of the translocating strand sugar-phosphate backbone integrity. Furthermore, we demonstrated for the first time the ability of the coronavirus Nsp13 helicase to disrupt a high-affinity nucleic acid-protein interaction, i.e., a streptavidin tetramer bound to biotinylated RNA or DNA substrate, in a uni-directional manner and with a preferential displacement of the streptavidin complex from biotinylated ssDNA versus ssRNA. In contrast to the poorly hydrolysable ATP-gamma-S or non-hydrolysable AMP-PNP, ATP supports Nsp13-catalyzed disruption of the nucleic acidprotein complex, suggesting that nucleotide binding by Nsp13 is not sufficient for protein-RNA disruption and the chemical energy of nucleoside triphosphate hydrolysis is required to fuel remodeling of protein bound to RNA or DNA. Our results build upon structural studies of the SARS-CoV-2 RTC in which it was suggested that Nsp13 pushes the RNA polymerase (Nsp12) backward on the template RNA strand. Experimental evidence from our studies demonstrate that Nsp13 helicase efficiently remodels a large high affinity protein-RNA complex in a manner dependent on its intrinsic ATP hydrolysis function. We proposed that this novel biochemical activity of Nsp13 is relevant to its role in SARS-CoV-2 RNA processing functions and replication. It was proposed that Nsp13 facilitates proofreading during coronavirus replication when a mismatched base is inadvertently incorporated into the SARS-CoV-2 genome during replication to reposition the RTC so that the proofreading nuclease complex (Nsp14-Nsp10) can gain access and remove the nascently synthesized nucleotide to ensure polymerase fidelity. Our findings implicate a direct catalytic role of Nsp13 in protein-RNA remodeling during coronavirus genome replication beyond its duplex strand separation or structural stabilization of the RTC, yielding new insight into the proofreading mechanism. This work was supported by the Intramural Training Program, National Institute on Aging (NIA), NIH, and a Special COVID-19 Grant from the Office of the Scientific Director, NIA, NIH.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

3.
Glycobiology Conference ; 32(11), 2022.
Article in English | EMBASE | ID: covidwho-2124568

ABSTRACT

The proceedings contain 195 papers. The topics discussed include: structural and mechanistic studies of C-mannosyltransferase;development of radical carbohydrate footprinting for glycan solvent accessible surface analysis;GlycoGrip: a glycocalyx-inspired lateral flow strip-based assay designed to detect betacoronaviruses;glycans as central regulators of the immunological pathways at the frontiers of microbial infections, chronic inflammation and autoimmunity;an atlas of the human O-Man glycoproteome reveals domain-specific modifications and substrate specificities of human mannosyltransferases;role of proteoglycans in determining muscle stem cell fate during pregnancy;transcriptomic analyses unravel differential expression of genes involved in the N-glycosylation pathway of phaeodactylum tricornutum ecotypes;immunoglobulin N-glycosylation discriminates acute Lyme disease from endemic healthy controls and mimic diseases ' a novel diagnostic and prognostic;spatiotemporal biosynthesis of paucimannosidic proteins via a noncanonical truncation pathway in human neutrophils;and specific N-glycans regulate the function of an extracellular adhesion complex during somatosensory dendrite patterning.

4.
Enzymes ; 49: 39-62, 2021.
Article in English | MEDLINE | ID: covidwho-1439811

ABSTRACT

Nucleotide analogs are the cornerstone of direct acting antivirals used to control infection by RNA viruses. Here we review what is known about existing nucleotide/nucleoside analogs and the kinetics and mechanisms of RNA and DNA replication, with emphasis on the SARS-CoV-2 RNA dependent RNA polymerase (RdRp) in comparison to HIV reverse transcriptase and Hepatitis C RdRp. We demonstrate how accurate kinetic analysis reveals surprising results to explain the effectiveness of antiviral nucleoside analogs providing guidelines for the design of new inhibitors.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Adenosine Monophosphate , Alanine , Antiviral Agents/pharmacology , Humans , Kinetics , Nucleotides , RNA, Viral/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL